Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

Section
Column
width50%

Color – Specifies the diffuse color of the material. Note: the actual diffuse color of the surface also depends on the reflection and refraction colors.

Roughness – Specifies the roughness of the diffuse part of the material. Used to simulate rough surfaces or surfaces covered with dust (for example, skin, or the surface of the Moon).

Roughness Model – Specifies the Roughness model.

Oren-Nayar  reflectivity model for diffuse reflection from rough surfaces that has been shown to accurately predict the appearance of a wide range of natural surfaces. We recommend using this roughness model.
Gamma-based  The roughness model used in previous versions of V-Ray. This is not the recommended option.

Opacity – Assigns opacity to the material where 1.0 is completely opaque and 0.0 is completely transparent.

Opacity Mode – Controls how opacity is sampled.

Normal –  (Legacy) The opacity map is evaluated as normal: the surface lighting is computed and the ray is continued for the transparent effect. The opacity texture is filtered as normal.
Clip – (Very fast) The opacity texture is not filtered and it is clipped to either fully opaque or fully transparent based on the mid-point value. Useful when there are many transparent surfaces one behind the other like leaves.
Stochastic – (Optimal) The opacity texture is filtered and the surface is randomly shaded as either fully opaque or fully transparent for a correct average appearance.

Opacity Source – Chooses between Grayscale and Colored opacity.

Self-illumination – Specifies the self-illumination color of the material.

Self-illumination Mult. – Specifies a multiplier for the self-illumination of the material.

Self-illumination Affects Gi – When enabled, the self-illumination color affects GI computations.

Column
width5%

 

Column
width45%

...

Section
Column
width50%

BRDF Type – Determines the type of BRDF (the shape of the highlight and glossy reflections). This parameter has an effect only if the Reflection Color is different from black and Reflection Glossiness is different from 1.0. For more information, see The BRDF Type example below.

Phong – Phong highlight/reflections
Blinn – Blinn highlight/reflections
Ward – Ward highlight/reflections
GGX – GGX Microfacet highlight/reflections

UI Text Box
typetip

GGX is the most modern and flexible BRDF (Bidirectional reflectance distribution function) type and is able to better represent a broad range of materials thanks to its ability to control the shape of the specular lobe.

There currently isn't any particular performance difference between models and there is little reason to choose any of the other types.

Expand
titleRead more...

Historically, the Phong, Blinn, Ward and GGX are successive reflectance models developed over the years in computer graphics where each model aimed to improve on the limitations of the previous ones. For example, the specular highlights with the Phong model have a very narrow and bright center with no falloff, but it doesn't work well with anisotropic reflections. The Blinn model has broader highlight center with a tight falloff. The Ward model has an even broader center and falloff. The GGX model has a bright center and an even longer falloff (at default settings). In the past, each model's characteristics resembled more closely a certain type of material, for example Phong could be used for plastics, Ward for cloth and metals, and Blinn for other common surfaces. However with the introduction of the GGX model, all of these surfaces can be approximated well, thus reducing the need for using the other models.

It should be noted that no principled model is able to represent all possible materials entirely accurately, and where those models fail - for example when the material isn’t viewed frontally - only approaches such as that of VRscans are able to capture the correct material representation.

GGX Tail Falloff – Controls the transition from highlighted areas to non-highlighted areas when the BRDF Type is set to GGX.

Color – Reflection color. Note that the reflection color dims the Diffuse ColorFor more information, see The Reflection Color Parameter example below.

Glossiness – Controls the sharpness of reflections. A value of 1.0 means perfect mirror-like reflection; lower values produce blurry or glossy reflections. For more information, see The Reflection Glossiness Parameter example below.

Use Fresnel – When enabled, makes the reflection strength dependent on the viewing angle of the surface. Some materials in nature (glass etc) reflect light in this manner. Note that the Fresnel effect depends on the index of refraction (IOR) as well.

Glossy Fresnel – When enabled, uses glossy fresnel to interpolate glossy reflections and refractions. It takes the Fresnel equation into account for each "microfacet" of the glossy reflections, rather than just the angle between the viewing ray and the surface normal. The most apparent effect is less brightening of the grazing edges as the glossiness is decreased. With the regular Fresnel, objects with low glossiness may appear to be unnaturally bright and "glowing" at the edges. The Glossy Fresnel calculations make this effect more natural.

Lock Fresnel IOR to Refraction IOR – Allows the user to unlock the Fresnel IOR parameter for finer control over the reflections. When this is enabled, the Fresnel IOR is locked to the Refraction IOR.

Fresnel IOR – The IOR to use when calculating Fresnel reflections. Normally this is locked to the Refraction IOR parameter, but you can unlock it for finer control. For more information, see The Use Fresnel Option example below.

Metalness – Controls the reflection model of the material from dielectric (metalness 0.0) to metallic (metalness 1.0). Note that intermediate values between 0.0 and 1.0 do not correspond to any physical material. This parameter can be used with PBR setups coming from other applications. The reflection color should typically be set to white for real world materials.

Anisotropy – Determines the shape of the highlight. A value of 0.0 means isotropic highlights. Negative and positive values simulate "brushed" surfaces. For more information, see the Anisotropy example below.

Rotation – Determines the orientation of the anisotropic effect in a float value between 0 and 1 (where 0 is 0 degrees and 1 is 360 degrees). For more information, see Anisotropy Rotation example below.

Uv Vectors Derivation – Specifies the method for deriving anisotropy axes:

Local Axis – Uses a local axis for the anisotropy effect.
UVW Generator – Allows the user to assign a UVW Generator for the anisotropy effect.

Axis – Specifies a local object axis for the anisotropy effect when Uv Vectors Derivation is set to Local Axis.

Trace Reflections – Enables reflections for the material.

Exit Color – If a ray has reached its maximum reflection depth, this color is returned without tracing the ray further.

Max Depth – The number of times a ray can be reflected. Scenes with lots of reflective and refractive surfaces may require higher values to look correct.

Enable Dim Distance – Enables the Dim distance parameter which allows you to stop tracing reflection rays after a certain distance.

Dim Distance – Specifies a distance after which the reflection rays are not traced.

Dim Fall-off – A fall off radius for the dim distance.

Soften – Softens the edge of the BRDF at light/shadow transitions

Affect Channels – Allows the user to specify which channels are going to be affected by the reflectivity of the material.

Color Only – The reflectivity affects only the RGB channel of the final render.
Color+Alpha – Causes the material to transmit the alpha of the reflected objects, instead of displaying an opaque alpha.
All Channels – All channels and render elements are affected by the reflectivity of the material.

Column
width5%

 

Column
width45%

...

Section
Column
width50%

Color – Refraction color. Note that the actual refraction color depends on the Reflection Color as well. For more information, see The Refraction Color Parameter example below. 

Glossiness – Controls the sharpness of refractions. A value of 1.0 means perfect glass-like refraction; lower values produce blurry or glossy refractions. For more information, see The Refraction Glossiness Parameter example below.

Index of Refraction – Index of refraction for the material, which describes the way light bends when crossing the material surface. A value of 1.0 means the light does not change direction.  For more information, see The Refraction IOR Parameter example below.

Fog ColorDispersion The attenuation Enables the calculation of light as it passes through the material. This option helps simulate the fact that thick objects look less transparent than thin objects. Note that the effect of the fog color depends on the absolute size of the objects and is therefore scene-dependent. This parameter can be mapped with a texture. It is recommended that you use a 3D texture for the purpose. For more information, see the Fog Color Parameter example below.  

Fog Multiplier – The strength of the fog effect. Smaller values reduce the effect of the fog, making the material more transparent. Larger values increase the fog effect, making the material more opaque. For more information, see The Fog Multiplier Parameter example below.

Fog Bias – Changes the way the fog color is applied. Negative values make the thin parts of the objects more transparent and the thicker parts more opaque and vice-versa (positive numbers make thinner parts more opaque and thicker parts more transparent).

Dispersion – Enables the calculation of true light wavelength dispersion.

Abberation – Allows the user to increase or decrease the dispersion effect. Lowering it widens the dispersion and vice versa.

Affect Shadows – This parameter causes the material to cast transparent shadows to create a simple caustic effect dependent on the Refraction Color and the Fog Color. For accurate caustic calculations, disable this parameter and instead enable Caustics in the V-Ray Renderer. Simultaneous usage of both Caustics and Affects Shadows can be used for artistic purposes but does not produce a physically correct result.

Thin Walled – (intended for single-surface transparent materials) When enabled and the Translucency Type is set to SSS, it simulates thin translucent surfaces such as soap bubble, leaves, curtains, etc. The SSS Color defines the backside color, while the SSS Amount controls the translucency effect.

Trace Refractions – Enables refractions for the current material.

Use Exit Color – Enables the use of Exit Color.

Exit Color – If a ray has reached it's maximum depth this color is returned instead of tracing the ray further

Max Depth – The number of times a ray can be refracted. Scenes with lots of refractive and reflective surfaces may require higher values to look correct.

Affect Channels – Allows the user to specify which channels are going to be affected by the transparency of the material

Color Only – The transparency affects only the RGB channel of the final render.
Color+Alpha – This causes the material to transmit the alpha of the refracted objects, instead of displaying an opaque alpha. 
All Channels – All channels and render elements are affected by the transparency of the material.

Column
width5%

 

Column
width45%

Image Removed

 

...

 

 

...

bordertrue

...

width50%

true light wavelength dispersion.

Abberation – Allows the user to increase or decrease the dispersion effect. Lowering it widens the dispersion and vice versa.

Affect Shadows – This parameter causes the material to cast transparent shadows to create a simple caustic effect dependent on the Refraction Color and the Fog Color. For accurate caustic calculations, disable this parameter and instead enable Caustics in the V-Ray Renderer. Simultaneous usage of both Caustics and Affects Shadows can be used for artistic purposes but does not produce a physically correct result.

Thin Walled – (intended for single-surface transparent materials) When enabled and the Translucency Type is set to SSS, it simulates thin translucent surfaces such as soap bubble, leaves, curtains, etc. The SSS Color defines the backside color, while the SSS Amount controls the translucency effect.

Trace Refractions – Enables refractions for the current material.

Use Exit Color – Enables the use of Exit Color.

Exit Color – If a ray has reached it's maximum depth this color is returned instead of tracing the ray further

Max Depth – The number of times a ray can be refracted. Scenes with lots of refractive and reflective surfaces may require higher values to look correct.

Affect Channels – Allows the user to specify which channels are going to be affected by the transparency of the material

Color Only – The transparency affects only the RGB channel of the final render.
Color+Alpha – This causes the material to transmit the alpha of the refracted objects, instead of displaying an opaque alpha. 
All Channels – All channels and render elements are affected by the transparency of the material.

Column
width5%

 

Column
width45%

Image Added

 

Anchor
refractionColorParameter
refractionColorParameter
 
Anchor
refractionIOR
refractionIOR

Example: The Refraction Color Parameter

This example demonstrates the effect of the Refraction color parameter to produce glass materials. For the images in this example, the material is with a grey Diffuse color, white Reflection color and Fresnel option on.

 

Image slider
minLabel-0.8
startIndex4
maxLabel0.8
Panel
borderStylenone

Image Removed

Refraction color is black (0, 0, 0) (no refraction)

Panel
borderStylenone

Image Removed

Refraction color is light grey (192, 192, 192)

Panel
borderStylenone

Image Removed

Refraction color is white (255, 255, 255)

...

width50%

Example: The Refraction IOR Parameter

This example demonstrates the effect of the Refraction IOR parameter. Note how light bends more as the IOR deviates from 1.0. The case when the index of refraction (IOR) is 1.0 produces a transparent object. Note however, that in the case of transparent objects, it might be better to assign an opacity map to the material, rather than use refraction.

Image slider
minLabel-0.8
maxLabel0.8
Panel
borderStylenone

Image Removed

Refraction IOR is 0.8

Panel
borderStylenone

Image Removed

Refraction IOR is 1.0

Panel
borderStylenone

Image Removed

Refraction IOR is 1.3

Panel
borderStylenone

Image Removed

Refraction IOR is 1.8

Anchor
refractionGlossinessrefractionGlossiness
Anchor
fogColorfogColor

...

 

 

Section
bordertrue
Column
width50%

Example: The Refraction

Glossiness

Color Parameter


This example demonstrates the effect of the Refraction glossiness parameter. Note how lower Refraction glossiness values blur the refractions and cause the material to appear as frosted glasscolor parameter to produce glass materials. For the images in this example, the material is with a grey Diffuse color, white Reflection color and Fresnel option on.

 

Image slider
minLabel-0.8
startIndex4
maxLabel0.8
Panel
borderStylenone

Image Modified

Refraction glossiness is 1.0 color is black (0, 0, 0) (no refraction)

Panel
borderStylenone

Image Modified

Refraction glossiness is 0.9 color is light grey (192, 192, 192)

Panel
borderStylenone

Image Modified

Refraction glossiness is 0.8 

 

 

color is white (255, 255, 255)

Column
width50%

Example: The

Fog Color

Refraction IOR Parameter


This example demonstrates the effect of the Fog color parameter. Notice how the thick areas of the object are darker in the two images on the right because of the light absorption of the fog.

 

Refraction IOR parameter. Note how light bends more as the IOR deviates from 1.0. The case when the index of refraction (IOR) is 1.0 produces a transparent object. Note however, that in the case of transparent objects, it might be better to assign an opacity map to the material, rather than use refraction.

Image slider
minLabel-0.8
maxLabel0.8
Panel
borderStylenone

Image Modified

Refraction IOR is 0.8

Panel
borderStylenone

Image Added

Refraction IOR is 1.0Fog Color is White (255, 255, 255)

Panel
borderStylenone

Image Modified

Fog Color is Gray (243, 243, 243) Refraction IOR is 1.3

Panel
borderStylenone

Image Modified

Fog Color is Green (230, 243, 213) 

...

Refraction IOR is 1.8



Anchor
refractionGlossiness
refractionGlossiness

...

 

 

Section
bordertrue

...

 

Example: The Fog Multiplier Parameter

This example demonstrates the effect of the Fog multiplier parameter. Smaller values cause less light absorption because of the fog; while higher values increase the absorption effect.

section
Column
width20%25%

 

Column
60%
width50%

Example: The Refraction Glossiness Parameter


This example demonstrates the effect of the Refraction glossiness parameter. Note how lower Refraction glossiness values blur the refractions and cause the material to appear as frosted glass.

 

Image slider
minLabel-0.38
startIndex4
maxLabel10.58
Panel
borderStylenone

Image Modified

Fog multiplier is 0Refraction glossiness is 1.3

Panel
borderStylenone

Image Modified

Fog multiplier is 1Refraction glossiness is 0.0

Panel
borderStylenone

Image Modified

Fog multiplier is 1Refraction glossiness is 0.5

Column
20%
width25%

 

 

Translucency

...

Section
Column
width50%

Type – Selects the algorithm for calculating translucency (also called sub-surface scattering). Note that refraction must be enabled for this effect to be visible. Currently only single-bounce scattering is supported. See the example below for illustration. 

None – When selected, the only available parameters are the Fog Color and Depth. Together with the Refraction Color, they determine the attenuation of light as it passes through the material. In this mode, there is no subsurface scattering.

Expand
titleClick here to expand an example of the None mode

A material with white refraction color and green fog color tints the rays as they pass through the material but otherwise, there is no light scattering inside.

 

Volumetric – Works together with the Refraction Color of the material to scatter light inside the object. It is useful for liquids and other highly transparent materials. The Refraction Color and Refraction Glossiness determine respectively how much of the interior of the object is visible and how rays interact with the object’s surface.

Expand
titleClick here to expand an example of the Volumetric mode

In this example, you can see the same material as the one in the None mode example but with Volumetric modeenabled with a yellow Scatter Color, at various Amounts.

 

Section
Column
width1%

 

Column
width98%
Image slider
Panel
borderStylenone

Amount = 1

Panel
borderStylenone

Amount = 0.75

Panel
borderStylenone

Amount = 0.5

Panel
borderStylenone

Amount = 0.25

Panel
borderStylenone

Amount =0

Column
width1%

 

SSS – Works independently of the Refraction Color/Glossiness and is useful for skin, wax, marble and other relatively opaque materials.

Expand
titleClick here to expand an example of the SSS mode

A material with no refraction (black color) and light color for the Fog Color is used with blue Scatter Color, which is scattering inside the volume of the object.

 

Section
Column
width1%

 

Column
width98%
Image slider
Panel
borderStylenone

Amount = 1

Panel
borderStylenone

Amount = 0.75

Panel
borderStylenone

Amount = 0.5

Panel
borderStylenone

Amount = 0.25

Panel
borderStylenone

Amount = 0

Column
width1%

 

UI Text Box
typenote

As the new translucency modes perform multibounce volumetric light scattering, they require closed objects.

Depth (cm) – Controls the strength of the fog effect. Higher values reduce the effect of the fog, making the material more transparent. Smaller values increase the fog effect, making the material more opaque.

Fog Units Scaling – When enabled, the fog color attenuation becomes dependent on the current system units.

Amount – Specifies the translucency amount for Volumetric and SSS translucency types.

Scatter Color – Filter color for the translucency effect.

Column
width5%

 

Column
width45%

...